Actin polymerization. The mechanism of action of cytochalasin D.

نویسندگان

  • D W Goddette
  • C Frieden
چکیده

Fluorescence changes using actin covalently labeled with N-(1-pyrenyl)iodoacetamide have been used to determine the effect of cytochalasin D on actin polymerization. A mechanism for the effect of cytochalasin D on actin polymerization is presented, which explains the experimental observation of a cytochalasin D-induced increase in the initial rate of polymerization and a decrease in the final extent of the reaction. Central to this mechanism is the Mg2+-dependent formation of cytochalasin D-induced dimers. The dimers serve as nuclei to enhance the polymerization rate. Binding of Mg2+ to a low affinity site on the dimer induces a conformational change which can be observed as a rapid fluorescence increase. A subsequent time-dependent fluorescence decrease observed prior to polymerization appears to represent ATP hydrolysis resulting in dissociation of the dimer and release of actin monomers containing ADP. We postulate that a slow rate of exchange of ATP for bound ADP relative to hydrolysis results in the accumulation of monomers containing ADP. As these monomers have a high critical concentration, the final extent of polymerization is reduced dramatically. The Mg2+ dependence of the final extent of polymerization in the presence of cytochalasin D is also explained in the context of this mechanism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neurite outgrowth is driven by actin polymerization even in the presence of actin polymerization inhibitors

Actin polymerization is a universal mechanism to drive plasma membrane protrusion in motile cells. One apparent exception to this rule is continuing, or even accelerated outgrowth of neuronal processes in the presence of actin polymerization inhibitors. This fact together with a key role of microtubule dynamics in neurite outgrowth led to the concept that microtubules directly drive plasma memb...

متن کامل

Effects of cytochalasin D and latrunculin B on mechanical properties of cells.

Actin microfilaments transmit traction and contraction forces generated within a cell to the extracellular matrix during embryonic development, wound healing and cell motility, and to maintain tissue structure and tone. Therefore, the state of the actin cytoskeleton strongly influences the mechanical properties of cells and tissues. Cytochalasin D and Latrunculin are commonly used reagents that...

متن کامل

Src Kinases Regulate De Novo Actin Polymerization during Exocytosis in Neuroendocrine Chromaffin Cells

The cortical actin network is dynamically rearranged during secretory processes. Nevertheless, it is unclear how de novo actin polymerization and the disruption of the preexisting actin network control transmitter release. Here we show that in bovine adrenal chromaffin cells, both formation of new actin filaments and disruption of the preexisting cortical actin network are induced by Ca2+ conce...

متن کامل

Actin polymerization is essential for pollen tube growth.

Actin microfilaments, which are prominent in pollen tubes, have been implicated in the growth process; however, their mechanism of action is not well understood. In the present work we have used profilin and DNAse I injections, as well as latrunculin B and cytochalasin D treatments, under quantitatively controlled conditions, to perturb actin microfilament structure and assembly in an attempt t...

متن کامل

Regulation of cortactin/dynamin interaction by actin polymerization during the fission of clathrin-coated pits.

Separation of clathrin-coated pits from the plasma membrane, a key event during endocytosis, is thought to be driven by dynamin and the actin cytoskeleton. However, the mechanism for the actin-mediated endocytosis remains elusive. RNA interference-mediated suppression of cortactin, an F-actin binding protein that promotes Arp2/3 complex-mediated actin polymerization, effectively blocked transfe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 261 34  شماره 

صفحات  -

تاریخ انتشار 1986